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Abstract

Are explicit versus implicit learning mechanisms reflected in the brain as distinct neural structures, as previous research
indicates, or are they distinguished by brain networks that involve overlapping systems with differential connectivity? In this
functional MRI study we examined the neural correlates of explicit and implicit learning of artificial grammar sequences.
Using effective connectivity analyses we found that brain networks of different connectivity underlie the two types of
learning: while both processes involve activation in a set of cortical and subcortical structures, explicit learners engage a
network that uses the insula as a key mediator whereas implicit learners evoke a direct frontal-striatal network. Individual
differences in working memory also differentially impact the two types of sequence learning.
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Introduction

Previous research has suggested that explicit learning, a form of

conscious, intentional, and declarative process of knowledge

acquisition, differs significantly from implicit learning, a form of

unconscious, incidental, and procedural knowledge acquisition.

These two forms of learning have also been suggested to play

distinct roles in natural language acquisition: according to the

declarative-procedural model [1], native language learners rely on

declarative memory (mostly explicit) for lexical processing and

learning but procedural memory (mostly implicit) for grammatical

processing and learning; in contrast, second language learners rely

on declarative memory to handle both lexical and grammatical

processes. Recent neuroimaging data also suggest that distinct and

separable cognitive and neural mechanisms underlie explicit and

implicit learning: the hippocampus and the temporal-parietal

cortex are considered important structures in subserving explicit

learning and representation of knowledge [2,3], whereas a cortical-

subcortical circuit (specifically the frontal cortex and the basal

ganglia) is believed to mediate implicit learning and memory [4–

6]. In particular, the medial temporal lobe and the basal ganglia

are found to be differentially engaged in explicit versus implicit

learning conditions, and as learning progresses, the learner’s

dependence on the temporal lobe declines rapidly [7].

While dissociations between implicit and explicit learning have

figured prominently in memory research, a growing number of

studies have also highlighted how the two types of learning might

interact in the learning process, particularly in natural language

learning [7–12]. Research has indicated that while implicit

learners can quickly show competence on original learning

materials, they fail in a deeper understanding of the underlying

rules; in contrast, explicit learners understand the rules but fail to

apply them to novel stimuli. Only when explicit learning and

implicit learning occur together can the learner apply the explicit

knowledge of the rules to new structures. A given learner may

employ both systems by using explicit learning for initial

registration of form-meaning associations while using implicit

learning for information integration, thus maximally benefitting

from both types of learning. However, there might be inherent

constraints (e.g., age or learning condition) on the learner’s ability

to use one or both types of learning, such that early learning in the

natural setting (e.g., first language acquisition by children) depends

more heavily on implicit learning, whereas initial learning in the

instructed setting (e.g., classroom second language acquisition by

adults) relies more strongly on explicit procedures.

The existing literature also suggests that although explicit and

implicit learning may be dissociable on both cognitive and neural

dimensions, the two types of systems can display in a single

individual in terms of resource allocation, information integration,

and learning constraints. The precise neurocognitive mechanisms

of the two types of learning, however, remain to be determined

[13,14]. In this study, we provide evidence to show that the

interaction between, as well as the distinction of, implicit learning

and explicit learning mechanisms may be represented by brain

networks of differential connectivity, as discussed below. We

demonstrate this through learning in a classic paradigm called

artificial grammar learning [15].

Recent interests in large-scale brain networks point to a new

framework for understanding distinct versus overlapping neural

systems, and for identifying the dynamic interactions among

neural systems for both normal and impaired brain functions

[16–18]. This framework views cognitive functions as arising

from the interactions between and within distributed brain

networks, often constrained by context and mode of learning and

processing. With methodological developments in neuroimaging

such as structural equation modeling [19] and dynamic causal

modeling [20], researchers are now able to do ‘effective

connectivity’ analysis to identify the causal interactions among

brain regions, rather than just inferring correlational relationships
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using ‘functional connectivity’ analyses. However, such bidirec-

tional influences in effective connectivity are very complex and

may be both activity- and time-dependent. It was not until

recently that researchers are able to examine both the activation

and connection at a given time (contemporaneously) and their

directions of influence across different times (sequentially),

through methods such as unified structural equation modeling

[21–23]. A first objective of the current study is to present

evidence based on effective connectivity analyses of functional

magnetic resonance imaging (fMRI) data, to show that explicitly

and implicitly learned materials involve overlapping neural nodes

but differentially weighted brain networks.

A second important objective of this study is to identify whether

individual differences in phonological working memory, among

other cognitive abilities, would significantly and differentially

impact explicit versus implicit learning. It is well known that

phonological working memory, the ability to maintain, store, and

update phonological sequences, is associated with first and second

language learning [24–27]. Some studies have suggested that

working memory capacity impacts explicit language learning [28],

but not implicit learning processes [29,30]. It has also been

claimed that working memory is a strong predictor of second

language learning: individuals with higher working memory

perform better or more like native speakers than those with lower

working memory during the acquisition and processing of lexicon

and grammar [25,31]. Such findings point to the fact that explicit

learning rests more heavily on conscious awareness and attentional

control, whereas implicit learning does not [32]. However, there is

a lack of research in the neural mechanisms underlying the

relationship between phonological working memory and implicit

and explicit learning conditions. Thus, understanding how

phonological working memory differently influences the two types

of learning, as well as the neural networks for explicit versus

implicit learning, were the research goals of the present study.

To answer our research questions, we trained participants with

an adapted classic artificial grammar learning (AGL) paradigm

[15] that involves syllable sequences generated through a finite-

state grammar (Figure 1). Finite-state grammars, although limited

in their generative capacities [33], are complex systems that can

derive sequences through nodes and loops, and the generated

sequences either conform to prescribed grammatical rules or do

not (see Materials and Methods for details). In a typical AGL

paradigm, participants are exposed to a subset of letter sequences

generated by a finite grammar (the study phase), and then are

given a grammaticality judgment test (the test phase) to see

whether they can discriminate new grammatical strings from non-

grammatical ones. Although participants often show little confi-

dence in their judgments and are unable to consciously report the

rules of the grammar, they typically perform above chance on

AGL tasks after training. More important for our discussion,

learning in the AGL task, although involving artificially generated

sequences for training, has been frequently used to infer about

natural language acquisition and processing, as have other

artificial systems such as Brocanto [34]. Recent neuroimaging

data also indicate that structural incongruencies in both artificial

grammar learning and natural language learning lead to similar

P600 effects, a positive shift in the waveform recorded through

event-related potentials (ERP), typically associated with the

processing of syntactic or grammatical violations [35].

In our study, the participants underwent a study-test procedure

as in the classic AGL task: during the study phase, they were asked

to study and memorize sequences of syllables that were

grammatical according to the finite-state grammar; during the

test phase (retrieval phase), when their brain images were

collected, they were told to discriminate whether or not the

presented novel sequence conformed to the learned AGL rules

(grammaticality judgment; see Materials and Methods for

details). Forty-three university students, who were performance-

matched for IQ, vocabulary, processing speed, and executive

control abilities (Table 1), were randomly assigned to the explicit

versus the implicit learning group and received identical study-test

materials with identical procedures, except that at the beginning of

the study phase, the explicit group was told of the existence of

complex rules underlying the sequences of syllables that the

participants were studying, whereas the implicit group was not.

We investigated the similarities and differences between the neural

networks underlying explicit and implicit learning conditions

during the retrieval phase in the fMRI scanning session, and

further examined correlations between the participants’ phono-

logical working memory capacity and their neural responses to the

two types of learning.

Results

There were no significant differences at the group level between

explicit and implicit learners in terms of their average age, IQ,

vocabulary, processing speed, phonological working memory and

other cognitive control abilities (Table 1). The explicit learners

showed better performance at the IQ and vocabulary tests than

the implicit learners, whereas the implicit learners outperformed

the explicit learners in processing speed, inhibitory control, and

working memory capacity measures. However, these differences

were not statistically significant, and were due particularly to

outlier performance scores from a few older participants in the

explicit group (see our attempt in controlling for age for the partial

correlation analysis below).

Response accuracy for grammaticality judgment was 59%

(SD = 0.075) and 56% (SD = 0.081) for the explicit group and the

implicit group, respectively, consistent with the accuracy range

that has been previously reported in the AGL literature [36].

These scores were significantly different from chance (t19 = 4.96,

explicit group; t22 = 3.47, implicit group, both ps ,.001) but not

from each other (t41 = 21.07, p..05). Although the explicit and

implicit learners did not differ significantly from one another at the

Figure 1. Finite-state grammar used to generate grammatical
syllable sequences for explicit and implicit learning. Grammat-
ical syllable sequences are generated by starting at the leftmost ‘In’
state and then following a path of arrows until the rightmost ‘Out’ state
is reached. For each arrow traversed, the indicated syllable is added to
the syllable sequence. For example, pok kun dem dem tik is grammatical,
and pok kun tik guk pok is ungrammatical.
doi:10.1371/journal.pone.0042993.g001
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group level, some participants from the explicit group noted, in

post-training briefings, patterns of repetition and co-occurrence of

certain syllables; however, no one was able to articulate the actual

finite-state grammar, consistent with findings in the AGL

literature.

The fMRI data of the grammaticality judgment versus

fixation showed common brain activations, regardless of types

of learning, in the middle frontal gyrus, supplementary motor

areas and occipital regions, and in particular, the hippocampus

and the caudate nucleus. Previous research has indicated

important hippocampal and caudate functions for motor

sequence learning in both explicit and implicit conditions

[37,38]. Direct comparisons between the two groups

(Table 2), however, revealed significant differences in the

precuneus (PCu), with increased activation for explicit learning

but decreased activation for implicit learning. Activity in the

PCu has been previously suggested to reflect episodic memory

retrieval in explicit compared to implicit condition [39]. In

contrast to the differences in the PCu, significantly greater

activations were observed in the left inferior frontal gyrus (IFG),

anterior insula (INS), and caudate nucleus (CN) for the implicit

compared to the explicit condition (Figure 2). One could

claim, on the basis of these direct comparisons, that the

contrasting patterns in these brain regions accord with the view

that distinct neural mechanisms subserve explicit versus implicit

learning, consistent with the extant literature.

We further examined the brain network differences between

the two groups by performing effective connectivity analysis on

the original time series data from the ROIs (henceforth nodes),

using the unified structural equation modeling (uSEM) [21–23].

The uSEM has been shown to be a powerful tool for effective

connectivity studies, allowing for the identification of both

contemporaneous and time-lagged effects and for both data-

driven and confirmatory approaches not possible with previous

Table 1. Summary of participant information and
performance scores.

Explicit
Learners

Implicit
Learners

N 20 23

Age (years) 21.5962.6 20.3961.07

Age Range (years) 19.33–30.75 18.17–22.25

Sex (male:female) 9:11 13:10

Handedness (maximum:45) 38.469.59 41.863.33

Nonverbal IQ (%) 51.74629.68 50.04622.74

Vocabulary (PPVT-4) 110.72613.92 109610.37

Picture Naming (ms) 690.866126.45 606.296258.81

Digit Symbol Substitution Test (ms) 1246.756153.26 11856170.05

Flanker Task (ms) 51.19627.17 35.87634.6

Color-Shape Switch (ms) 202.486102.26 158.676105.86

N-back (average accuracy %) 0.7760.13 0.7860.14

Letter-Number Sequencing
(maximum:8)

5.8161.11 6.1761.07

AGL Grammaticality Judgment (%) 58.5467.5 55.9468.1

Notes: numbers indicate means and standard deviations (6 SD). Measurement
scales are in parentheses following the characteristics labels. There are no
significant group differences in all measures above, indicating that the two
types of learners are highly comparable at a group level.
doi:10.1371/journal.pone.0042993.t001

Table 2. Areas of significant brain activations in the
grammaticality judgment task.

Regions activated L/R BA MNI Coordinates T

x y z score

Explicit learners

Middle frontal gyrus L 9 252 30 32 5.43

L 10 238 58 14 5.18

L 46 228 52 0 3.99

R 9 48 38 32 7.35

R 10 28 54 28 7.1

Precentral gyrus L 6 246 0 34 5.47

Supplementary motor area R 6 4 22 48 7.94

Insula L – 232 24 24 5.48

Superior parietal lobule L 7 228 272 50 9.3

Inferior parietal lobule R 7 38 254 52 9.45

Precuneus R 7 8 272 48 3.05

Inferior occipital gyrus L 19 240 286 210 9.58

Cuneus R 17 20 298 8 12

Hippocampus L – 222 228 26 4.19

R – 24 230 24 4.8

Caudate Nucleus R – 18 10 8 2.99

Implicit learners

Middle frontal gyrus L 46 240 54 10 6.55

L 10 242 48 214 5.02

R 9 44 34 26 6.93

R 6 38 10 54 6.16

Inferior frontal gyrus L 44 244 2 30 6.82

Supplementary motor area R 6 2 20 50 9.7

Insula L – 232 22 22 7.01

R – 32 24 22 7.37

Cingulate gyrus L 32 214 20 18 3.25

Precuneus L 7 228 256 46 7.74

R 7 28 228 44 7.69

Inferior occipital gyrus L 19 240 284 210 8.7

Lingual gyrus L 18 216 292 24 9.38

R 17 20 294 6 11.5

Hippocampus L – 226 226 26 4.54

R – 26 226 26 4

Caudate Nucleus L – 210 212 22 3.45

Explicit learners . Implicit learners

Superior parietal lobule L 7 236 272 50 2.92

Precuneus(PCu)* – 7 0 254 48 3.89

R 7 14 230 50 3.18

Implicit learners . Explicit learners

Inferior frontal gyrus (IFG)* L 44 236 8 22 2.94

Insula (INS)* L – 230 2 22 3.39

Cingulate gyrus L 32 22 30 34 3.43

Caudate Nucleus(CN)* L – 220 4 16 3.03

Notes: L, left hemisphere; R, right hemisphere. All activations reported were
thresholded at cluster level p,0.05. * Averaged time course data from all the
voxels within a sphere of 6 mm radius in each region of interests (PCu, INS, IFG,
CN) were extracted for comparisons of BOLD signal changes with brain
networks between the explicit and the implicit group.
doi:10.1371/journal.pone.0042993.t002
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methods (see Materials and Methods). Figure 3 illustrates

the contemporaneous connectivity relationships between nodes

in the explicit and implicit networks after controlling for time-

lagged effects, showing differences in (a) the strength of the

connectivity (indicated by the size of the arrows), (b) the

directionality of influence from node to node (direction of

arrows), and (c) the nature of the connectivity (positive or

negative). To see these differences more clearly: first, for explicit

learning, IFG positively influences the insula, which then feeds

to the caudate (CN). For implicit learning, however, the IFG-to-

CN connectivity is direct, without being mediated by the insula.

Second, the INS-CN connectivity has different directionality

between the two networks, in that the caudate-to-insula

influence is dominant for implicit learning whereas the reverse

influence is seen for explicit learning. Finally, the caudate also

actively interacts with the precuneus for implicit learning, with

positive CN-to-PCu influence but a much stronger negative

PCu-to-CN influence. For explicit learning, however, there is

only negative influence from CN to PCu, and more important,

PCu independently and negatively influences IFG, perhaps

reflecting the more independent role that PCu plays in the

episodic representation of grammatical rules [39].

To explore how individual differences in cognitive abilities

may impact explicit and implicit learning, we did correlation

analyses between grammaticality judgment accuracy in the AGL

task and performance scores from the participants’ cognitive

tests, which included IQ, vocabulary, processing speed, phono-

logical working memory and inhibitory control. Only the

phonological working memory measure showed significant

correlation with participants’ grammaticality judgment perfor-

mance in the AGL task. Given previous findings regarding

possible age-related dissociations between explicit and implicit

processes [40–42], along with age-related variance in our

explicit group (see above), we did partial correlation analyses

in which age was controlled for. Our analyses indicated that

grammaticality judgment accuracy in the explicit, but not the

implicit, condition was correlated with participants’ working

memory capacity (r = .564, p,.05) (Figure 4a). Additional

correlation analyses showed that the explicit learners’ working

memory ability correlated positively with their brain activations

in the left dorsolateral prefrontal cortex (DLPFC, BA 9;

Figure 4b), which included left superior and middle frontal

gyrus, whereas the implicit learners’ working memory ability

correlated positively with activations in the right DLPFC. The

DLPFC, particularly in the left hemisphere, has been consis-

tently implicated as a neural correlate for the central executive

function of working memory [24].

Discussion

The main goal of our research was to examine the neural

mechanisms underlying explicit versus implicit grammar learning.

There has been a large body of literature that investigates the

Figure 2. Brain activitions for explicit (Exp) versus implicit (Imp) learners during grammaticality judgment. Four left brain regions
showed different blood-oxygenation level dependent (BOLD) signal changes between groups (lower panel): CN = caudate nucleus; IFG = inferior
frontal gyrus; INS = insula; PCu = precuneus.
doi:10.1371/journal.pone.0042993.g002
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cognitive mechanisms of the two types of learning, but their neural

substrates remain to be understood. In particular, previous

cognitive studies have indicated interactions between the two

types of learning, whereas neuropsychological and neuroimaging

work has focused on their dissociations [6,39]. In the current

study, we sought to explore the connectivity relationships for the

relevant brain regions subserving the two types of learning. To

achieve this goal, we trained participants with a classic sequence

learning task in the artificial grammar learning paradigm, and

found that there are overlapping structures with differentially

weighted neural networks that underlie performance in the two

types of learning. More specifically, our fMRI data indicate that

different neural connectivity in the cortical-subcortical structures

may be involved in explicit versus implicit sequence learning, with

more frontal and parietal structures mediating the attentional and

episodic aspects of explicit processes while more direct frontal-

striatal relations characterizing the implicit processes.

An interesting though not surprising finding of our study is

that while neural patterns of brain response to explicit and

implicit learning seem to be clear, there are no significant

performance differences between the two groups of learners in

general, with respect to both the accuracy of artificial grammar

learning and the various cognitive behavioral measures. Several

previous studies have shown that explicit versus implicit learning

of artificial grammar or second language does not lead to

performance differences between groups [43], but in some cases

to different neural patterns of response. Morgan-Short, Stei-

nauer, Sanz, and Ullman [44] reported that explicit and implicit

second language training led to contrasting patterns in

behavioral and neural (ERP) responses. Their participants,

regardless of second language proficiency, did not differ in

behavioral performance. However, their implicit learning

condition elicited a typical brain activation pattern comparable

to pattern in native speakers whereas the explicit learning

condition did not. Other studies using the ERP method have

also demonstrated cases where ERP measures and behavioral

measures are inconsistent: where the behavioral measures show

no differences, the more sensitive ERP measures can pick up

the learning or performance differences (see [45] for review).

Thus, the lack of behavioral differences in our study does not

indicate the lack of differences between the two types of

learning, as the learning differences may be reflected only in

neural response patterns.

Our effective connectivity analyses based on the fMRI data

yielded three main findings. First, across both learning groups, the

IFG served as the ‘hub’ of neural activities, exerting strong top-

down influences on other nodes. For explicit learning, there is only

one top-down path from IFG to INS; for implicit learning,

however, the IFG-to-CN connectivity is direct and parallel to IFG-

INS-CN, without being mediated by the insula. This difference

between the two types of learning is highly significant, because the

insula has been previously identified as a core structure of the

Salience Network, which plays a central role in mediating access to

attention and memory and switching between endogenously

generated mental states (Default Mode Network) and exogenously

generated cognitive activities (Cognitive Control Network) – these

three networks are considered the core brain networks of

cognition, according to Bressler and Menon [16]. The insula as

a mediator between IFG and CN in the explicit but not the

implicit network suggests higher-order attentional/intentional

processing dedicated to explicit learning, as well as a possibly

stronger engagement of articulatory planning and control

processes involved. Second, the INS-CN connectivity is bidirec-

tional in implicit learning, instead of one way as in explicit

learning. Given the significant role that caudate plays in implicit

learning [46–48], this pattern suggests that the implicit learning

network recruits the caudate as a secondary hub of neural activity

while it places insula as subsidiary: rather than responding to

salient stimuli automatically as in explicit learning, the insula

becomes activated as a result of implicit sequence learning. Finally,

the connectivity between caudate and precuneus are different

between explicit and implicit learning. For explicit learning, PCu

Figure 3. Brain networks for explicit and implicit learners during grammaticality judgment. Positive relationship were denoted by solid
lines and negative relationships by dotted lines. See text for further explanation.
doi:10.1371/journal.pone.0042993.g003
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passively receives information, not directly from the frontal lobe or

the insula, but from the caudate. In contrast, PCu actively

influences caudate and positively influences IFG in implicit

learning. However, the relationship between PCu’s regional

activation level and its neural connectivity with other brain areas

needs further investigation. Taken together, our connectivity

analysis suggests that underlying similar behavioral performance,

explicit and implicit learning conditions rely on different

interactions between brain regions such as the inferior frontal

gyrus, the caudate, and the precunues.

Our study additionally indicates that individual differences in

working memory may impact success in sequence learning, and

the differently lateralized neural structures may be implicated in

the deployment of working memory depending on the type of

learning. The left dorsolateral prefrontal cortex, as shown in our

results, may serve as an important neural marker for successful

sequence learning in the explicit condition. The role of DLPFC in

working memory and its relationship to the two types of learning

suggest that we need to further consider individual differences in

learning and their neural correlates. For now, the fMRI data and

the brain networks analysis presented here have allowed for a new

understanding of the common versus distinct neural substrates

underlying explicit and implicit learning.

Materials and Methods

Ethics Statement
The study was approved by the Social, Life, and Engineering

Sciences Imaging Center and the Institutional Review Board of

the Pennsylvania State University. Informed written consents were

obtained from all participants before the experiment.

Participants
Forty-three native English speakers from the Pennsylvania State

University participated in the experiment and received payment

for their participation. All participants had normal or corrected-to-

normal vision, and reported no physical or mental disabilities.

They were all right-handed as judged by the handedness

questionnaire of Snyder and Harris [49].

Verbal and Nonverbal Tasks
All the participants received a battery of computerized tests on

nonverbal IQ, vocabulary, phonological working memory, pro-

cessing speed, and cognitive control abilities before they began

training on the artificial grammar learning (AGL) task. The test

results indicated that participants did not differ significantly on

cognitive and linguistic abilities (Table 1). Only the phonological

Figure 4. Role of working memory in explicit learning. Working memory capacity in the explicit group showed a positive correlation with
behavioral cognitive performance, as seen in (a), and with functional brain activation, as seen in (b), during grammaticality judgment. Residuals were
calculated from a partial correlation analysis after controlling for age effects. See text for explanation.
doi:10.1371/journal.pone.0042993.g004

Brain Networks of Explicit and Implicit Learning

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e42993



working memory results were reliably correlated with participants’

AGL performance (see Results).

Nonverbal intelligence task. Raven’s Standard Progressive

Matrix sets [50] were used to measure nonverbal intelligence. The

matrices were scanned and were presented to the participants via

the E-prime software, version 2.0 (Psychological Software Tools,

Inc., http://www.pstnet.com/eprime.cfm).

Vocabulary task. The Peabody Picture Vocabulary Test

(PPVT, 4th ed.) [51] was used in the current study to measure the

participants’ receptive vocabulary in English.

Phonological working memory task. The Letter-Number

Sequencing task, adapted from that of WMS-III [52], was used to

measure phonological working memory capacity. The participants

heard a series of alternating numbers and letters at the rate of

about one per second, and were asked to report first the numbers

in ascending numerical order and then the letters in alphabetical

order. The task began with one number and one letter and

continued to a maximum of four numbers and four letters

alternating in the sequence.

Processing speed tasks. The Digit Symbol Substitution task

and the Picture Naming task were used to measure nonlinguistic

and linguistic processing speed, respectively. The former task is a

computerized version of the Digit Symbol-Coding subtest from

WAIS-III while the latter task asks participants to name visually

presented familiar pictures. The pictures, corresponding to high-

frequency words in English, were selected from the UCSD

International Picture Naming Project [53].

Cognitive control tasks. The Flanker task, the Color-Shape

Switching task, and the N-back task were used to measure

inhibition, shifting, and updating components of cognitive control

abilities, respectively [54]. In the Flanker task [55], participants

were asked to press the left or the right button to indicate the

direction of a red arrow, flanked by other arrows in a sequence.

The directions of the target arrow and the flanker arrows were

either the same or different. In the Color-Shape Switching task

[56], participants were asked to judge either the shape or the color

of two targets (triangles or squares in either red or blue) depending

on the task cue. The cue for color judgment was a painting palette

and the cue for shape judgment was the same palette in black and

white. In the N-back working memory task [54], participants were

instructed to press a response button as quickly and as accurately

as possible whenever the currently presented letter was identical to

a pre-specified letter in a given series of letters (0-back) or the one

that occurred 1 or 2 items before its onset, in 1-back or 2-back

task, respectively.

Artificial Grammar Learning
Grammatical sequences were generated from a Markov-chain

finite-state grammar [15]. All grammatical sequences were formed

by following the path of arrows from ‘In’ to any terminal of ‘Out’

in the diagram (Figure 1). For each arrow traversed in the path,

the indicated syllable was added to the sequence until ‘Out’ was

reached. Ungrammatical sequences used in the test phase did not

follow the In-to-Out paths or skipped a necessary syllable. The

length of the grammatical and ungrammatical sequences varied

from two to five syllables.

According to the classic artificial grammar learning (AGL)

paradigm, participants undergo a study phase and a test phase. In

the current experiment, the participants were trained on 22

grammatical sequences in the study phase. Each syllable in the

sequence was presented visually for 800 ms, with an inter-

stimulus-interval of 200 ms between one syllable and the next.

The E-prime 2.0 software was used for stimulus presentation and

data registration. At the end of the presentation of a sequence,

participants were asked to recall the sequence by typing the

syllables in the correct order of the sequence. When finished

typing, they were shown the correct sequence on the computer

screen as a feedback, regardless of whether the sequence they

typed was correct or not. Participants received the 22 sequences in

increasing length: they were first presented with the two-syllable

sequences, which gradually increased in length, until all the five-

syllable sequences were presented. This presentation was repeated

twice for each participant so that the participant received a total of

66 sequences. All participants were told to memorize the

sequences for a memory task after the training. The explicit

learning group and the implicit learning group received the same

study and test materials, except that the explicit learning group

was told at the beginning of the study phase that there were

complex rules underlying the sequences of syllables just as

grammar rules underlying sentences. In the test phase, both

groups of participants were asked to make a grammaticality

judgment to novel sequences that either followed or did not follow

the rules of the learned AGL sequences. These novel sequences

were matched in syllable complexity and sequence length to the

original material used in the study phase.

fMRI Procedure
The study phase of the AGL was conducted outside the fMRI

scanner whereas the test phase inside the scanner. During the test

phase in the scanner, participants made grammaticality judgments

to the new syllable sequences, with each sequence presented in its

entirety for 3000 ms, preceded by a fixation of 500 ms and

followed by an inter-stimulus-interval of 500 ms. There were eight

blocks for the grammaticality judgment and each block consisted

of a 2-sec instruction period followed by six trials (26 sec in total).

Participants indicated a positive response (‘‘yes – sequence seen

was grammatical’’) by pressing a response key with their right

(dominant) index finger and a negative response (‘‘no – sequence

seen was ungrammatical’’) by pressing a response key with their

left index finger. All the task blocks were interleaved with resting

periods (16 s), during which time participants were asked to look at

a fixation cross.

MRI Acquisition
MRI images were acquired on a Siemens Magnetom Trio 3T

MRI scanner at the Social, Life, and Engineering Sciences

Imaging Center, Pennsylvania State University, using a T2*-

weighted gradient-echo EPI sequence (TE = 30 ms; TR = 2 s; flip

angle = 90u; matrix size = 80680 mm; FOV = 240 mm). Partici-

pants lay supine in the scanner with plastic ear canal molds, and

viewed the visual stimuli via a mirror apparatus mounted on the

head coil, while their heads were immobilized with cushions.

Functional images were reconstructed from 34 axial slices, with the

thickness of each slice being 4 mm. For each run, the functional

scanning was always preceded by 6 s of dummy scans to ensure

tissue steady-state magnetization. High-resolution (16161 mm3)

anatomical images were acquired using a T1-weighted, 3D

inversion-recovery gradient-echo (MP-RAGE) sequence.

fMRI Data Analysis and Connectivity Analysis
The data were preprocessed and analyzed with the Statistical

Parametric Mapping software (SPM8; Wellcome Trust Centre for

Neuroimaging, University College London, http://www.fil.ion.

ucl.ac.uk/spm). The first three scans (dummy scans) of each

participant’s data set were discarded to allow for T1 equilibration.

The remaining volumes were realigned to the first volume,

normalized to the EPI template in SPM8 based on the Montreal

Neurological Institute (MNI) stereotactic space, and then resam-
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pled into 26262-mm cubic voxels. Finally, the images were

spatially smoothed with an isotropic Gaussian kernel (9 mm full

width at half-maximum [FWHM]). Differences in the activation

maps between the two groups were tested by an independent-

samples t-test in SPM8 using contrast images for the grammat-

icality judgment task versus the baseline condition (fixation).

Statistical maps were thresholded at p,.05 familywise error rate

(FWER) corrected for multiple comparisons.

To arrive at connectivity models for the two groups, original

time series from four regions of interests (inferior frontal gyrus, BA

44; insula; caudate nucleus; precuneus, BA7) in the left hemisphere

were extracted using the Marsbar toolbox [57]. These regions

were chosen based on previous findings on neural correlates for

explicit and implicit learning, and on the peak clusters from our

group contrasts (Table 2). Averaged time course data of all the

voxels within a sphere (6 mm radius) in each region of interest

(ROI) were extracted for each individual imaging dataset and

sorted by experimental conditions (e.g., artificial grammar

judgment versus fixation). The averaged time course signals across

all trials were converted to percentage signal changes (PSC) using

the formula (signal – baseline)/baseline6100 for each time point,

where the baseline constant was the mean signal of the fixation

periods. The averaged PSC value for each task was considered as a

representative activation level of each ROI for each participant

and the group differences in PSC values were illustrated in

Figure 2.

Connectivity between these regions was determined by using

the unified structural equation model (uSEM) [23] with automatic

search procedure [21]. The majority of current statistical

techniques (e.g., structural equation modeling, vector autoregres-

sion) for assessing effective connectivity in functional MRI data

identify either contemporaneous or time-lagged effects, which is

problematic since both must be considered simultaneously for

unbiased parameter estimation. Dynamic Causal Modeling allows

for both effects to be built into the model, but it requires a priori

specification of connections among ROIs with a confirmatory

approach [20]. The uSEM method specifies, estimates, and

compares all possible models (or at least a large selection of

plausible models); in so doing it obtains both contemporaneous

and time-lagged effects for all nodes simultaneously within the

best-fitting model in an exploratory fashion, thus allowing for

automatically search for an optimal model without prior

specification of contemporaneous and sequential relationships

among ROIs. The uSEM model can be captured in the following

equation [23], where g indicates the ROI time series (with time

indicated by t, t+1, etc.), A the contemporaneous relations among

ROIs, W the lagged associations, and f the error residual assumed

to be a white noise.

g(tz1)~Ag(tz1)zW1g(t)zf(tz1)

Covariance matrices were created for each of the individual

ROI time series for our AGL task. Individual matrices were then

pooled to create a group matrix representing correlations between

ROIs. The group correlation matrices used for connectivity

analysis were 868, which included four ROI time series at time t

and the same four ROI time series at the next time t +1 (lagged

series). The automatic uSEM search procedure was applied to

each group matrix. Model fit parameters found to demonstrate

reliability in simulation studies [21,22] were chosen a priori so that

all the following criteria were satisfied in the final model: root

mean squared error of approximation (RMSEA) ,0.05; stan-

dardized root mean squared residual (Standardized RMR) ,0.05;

non-normed fit index (NNFI) .0.95; and the comparative fit

index (CFI) .0.95. This procedure offers a conservative estimate

of connection b values that are less sensitive to sample size and

number of parameters [58]. Figure 3 illustrates the unbiased

interactions between nodes of the networks after controlling for the

lagged relationship.
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